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Abstract

Today’s RC toys (circa 2006) are controlled by a single dedicated (and often proprietary) controller.  We endeavored to develop a remote control car that would be controlled via Bluetooth wireless technology.  Since Bluetooth is a standardized and relatively reliable wireless protocol, we hoped to create a car controllable by any Bluetooth device.  Additionally, Bluetooth consumes low power and has a larger bandwidth than the standard 900MHz RF link which drives most toys.  This added benefit allows for sending of complex information from the car to the controlling device—something unseen in consumer grade RC cars.  Our computer-controlled Bluetooth car prototype showed the feasibility and practicality of Bluetooth controlled devices, while also revealing limitations in the amount of data transmission capable in commercially available Bluetooth options.
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I. Project Description and Overview
1. Bluetooth Car

The core of our project (and also the component required for completion by the end of the semester) was a Bluetooth car. The requirements for the Bluetooth car were that it must connect wirelessly to a host via Bluetooth and that the host must be able to control the car’s movements: forward, backward, left turn, right turn and stop.

2. Cell Phone Interface


We desired to control the car from a second Bluetooth device such as laptop, and a cell phone. Many cell phones currently on the market are equipped with Bluetooth technology and some provide access to their Bluetooth hardware via J2ME: a small java virtual machine distributed with mobile devices. As an extra flashy feature of our car, and to further demonstrate the interoperability of Bluetooth, we wanted to write a J2ME MIDlet (mobile application) to replace the PC from Part I.  With the emergence of Web 2.0, and Android, IPhone, Blackberry platforms more and more Bluetooth connector prototype libraries exist and the controller software interface is left as a design challenge for anyone whom wishes to take it.
3. Video Stream


If time permitted, we wanted to explore transferring larger amounts of data over a Bluetooth link.  In order to best push the Bluetooth protocol to the edge, we wanted to attempt a live video stream from the car back to the host PC or cell phone. This was certain to be challenging because: 1) Bluetooth does not have the bandwidth for anything close to full resolution VGA video, 2) the lack of inexpensive digital video cameras on the market required us to decode analog NTSC video into a digital format for transmission, and 3) Our prior experience with video was limited.
II. A Brief Overview of Bluetooth

Bluetooth wireless technology is a relatively new technology for networking low power devices over short ranges. As of today, it is available in two major versions and three power classes. 
	Power Class
	Range

	Class 1
	100 meters

	Class 2
	10 meters

	Class 3
	1 meter


	Version
	Specified Maximum Transfer

	1.0-1.2
	700 kbps

	2
	3 Mbps



Version 1.0 to 1.2 is the most prevalent in Bluetooth devices at the time of writing—the differences between 1.0 and 1.2 were a series of small improvements and changes in implementation. The bandwidth of Bluetooth 1.0/1.2 was severely limited, but for current applications (transmitting mouse coordinates, keyboard inputs, cell phone contacts, images < 100kb, etc.) it is not a problem. For our implementation, we use Bluetooth 1.2 in order to cut down hardware costs, but as more and more devices begin to adopt Bluetooth the version 2.0 hardware will almost most certainly support some level of encoded video transmission.

For anyone interested in designing a device which uses Bluetooth, one of the most important concepts to understand is how the Bluetooth protocol is structured. When a software or hardware architect chooses Bluetooth, they are deciding to use one or more Bluetooth profiles of communication. For example, one could decide to use the Bluetooth Serial Port Profile (BSPP) which takes standard RS232 communication to the wireless world, Bluetooth Stereo Audio Profile (A2DP) to transmit stereo music, OBEX File Transfer to browse directory structures and copy files, or OBEX object push to send somebody a file or electronic business card.


Bluetooth currently defines these different profiles and the Bluetooth SIG (the group responsible for the Bluetooth standard) continues to define many more. It is important to realize that although the Bluetooth protocol defines these profiles, none are mandatory for any Bluetooth implementation. The advantage is that product architects can ignore profiles that are not relevant to their design, and The Catch, of course, is that any two devices that wish to communicate must implement the same profile.

When designing a Bluetooth device, hardware engineers find or build the analog wireless components which process the complicated frequency hopping algorithms at 2.4GHz and software engineers find or develop the Bluetooth stack. The stack implements and abstracts all the Bluetooth network profiles necessary for the device’s operation so they can be used easily by the firmware writers.  This is of course standard programming paradigm for device drivers and interfacing with hardware.  The data stack structure is shown in Figure 2.1.

[image: image1]
III. Hardware Development

This portion of the project turned out to be far more difficult than we originally imagined. Since neither of us had much experience with Bluetooth or prior knowledge of motors nor power systems--several aspects of the hardware provided weeks worth of engineering challenges.

Before exploring the depths of individual hardware components we’ll touch briefly on the parts used in our final implementation.


[image: image2]
1. Car Chassis/Motors

Due to time constraints and the fact we are electrical and computer engineers (not mechanical engineers), we choose to purchase a cheap RC car from Toys R’ Us and use it for the existing motors and chassis.  An identical car is not necessary to reconstruct our design, however when shopping for a car we tried to insure that both motors are brushed DC motors.  Specifically, ensure that the front motor is NOT a servo.  A servo motor would require motor control design modifications that are not discussed here within.
2. Bluetooth Module
We began the hardware design process by searching for and finding a suitable Bluetooth module. Initially, our only requirement was that the module would need to handle the wireless portion of the protocol by converting the raw Bluetooth data to/from a 2.4GHz wave allowing us to simply deal with digital bits.  Had we settled with this solution however, we would have also needed to implement the entire Bluetooth Serial Port Profile (BSPP) in software on the PIC microcontroller.  After further research we found the BlueRadios BR-SC30A available from Sparkfun Electronics.

This BR-SC30A module satisfied the original requirement, implements a Bluetooth stack and also provides the BSPP. The module is a dual inline package with an integrated antenna convenient for breadboard development. The hardware interface consists of power, ground, reset, factory reset, connection status, operation status, and a 3.3V RS232 interface. Needless to say, we opted to use this module as our Bluetooth solution over any other.

Initial design with the BlueRadios module was successful despite the poor spec sheet provided by the company. In order to isolate issues in debugging, we worked with the UART interface on our PIC microcontroller by using a logic level converter and a serial cable connected to the PC.  Once the UART interface was working, we then replaced the level converter with the BlueRadios module.  At this point, we could say with certainty that any issues with connectivity and data transfer were confined to the BlueRadios module.  This approach resulted in an test driven development style with agility and no major complications.

After weeks of testing and building a complete car control circuit with the BlueRadios module, we copied the hardware to a different breadboard on the car chassis.  It was at this point we discovered something very peculiar.  With the wiring exactly the same—diode for diode, wire for wire, color for color, wire length for wire length—we were unable to establish Bluetooth communication with the BlueRadios module while it was on any other breadboard. However, moving the configuration BACK to the original breadboard resulted in Bluetooth communication that was immediate and stable. Eliminating variables, we placed the new breadboard in the exact physical location of the working breadboard: no luck.  Eventually we determined the Bluetooth module could not source enough current for the status LEDs, but for some reason this did not surface as a problem on the original breadboard—possibly due to thicker underlying connections.
3. PIC Microcontroller
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 Video PIC Flow Control


In our initial foray into remote control car development we learned that most cars use a two motor system, one in the back to push the car forward and one in the front to turn the wheels left and right. We also discovered that the front motor is usually a servo motor which requires a pulse width modulator (PWM) for control. Since we had thought about controlling the rear wheel with a PWM as well, we needed a PIC capable of driving two PWMs independently and without software control, if such a PIC existed. We also wanted to have hardware UART to communicate with the Bluetooth module. This led us to find the PIC 18F4320.

The PIC 18F4320 maxes out at 10Mips with a 40MHz oscillator, and has two independent PWM controllers, 34 I/O pins, hardware controlled I2C, hardware controlled UART, is capable of external interrupts, and is way overkill for just a remote control car. It was perfect. The final design with the onboard video was going to use two of these chips: one for receiving commands and controlling the motors and the other for buffering and streaming the compressed video. See Figure A.1 in appendix A for the main circuit diagram.

The firmware for the motor control PIC is very simple and straightforward. On boot up, the PIC initializes the UART port and the PWMs. It then sits in a tight loop waiting for a flag called TXIF in a special register to go high. This flag signifies that a serial byte has been received. Once the software receives this signal, it copies the byte from the UART register and compares it to the list of acceptable commands. If it matches one of the commands the corresponding code is executed before going back to the loop that waits for serial bytes. This PIC uses PORTB to control the four lines leading to each motor’s H-bridge. 

The firmware for the video streaming PIC is slightly more complicated because it must use two different serial protocols to communicate with its peripherals and because it is heavily time constrained. The leftmost flow diagram in Figure 3.2.1 above shows the main loop of the PIC software. This loop waits for the video buffer to fill before disabling the external interrupt INT0. Then it waits for the serial code to stream the entire line out to the Bluetooth module before re-enabling INT0 and resetting the video buffer. At any time during the execution of the main loop, the loop can be interrupted by one of two interrupts. When one byte of compressed video is ready, INT0 is strobed and the INT0 ISR is executed. The INT0 ISR writes this byte to the buffer before returning control to the original code. The other interrupt is the UART interrupt. This fires when the UART hardware is available to be written to. The UART process is very slow compared to the number of video interrupts and the PIC itself, so it is given a low priority interrupt. Low priority interrupts on the PIC18 series can be interrupted by high priority interrupts. Because of this, the video buffering code goes in the high priority interrupt. This way, no matter what is running (the main loop or the UART interrupt), we don’t miss reading a video byte. The benefit to the way this code is written is that the baud rate on the UART can be changed to match different transmission hardware and the code will still work, it will just automatically read or drop a different number of lines.
4. H-Bridge

Most brushed DC motors (which are the type found in typical RC cars) are controlled by an H-Bridge.  The following image shows the theory of operation of an H-bridge (credit: http://www.mcmanis.com/chuck/robotics/tutorial/h-bridge/index.html) 
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Essentially, there are 4 switches used to create a path for current flow resulting in the desired direction: forward, reverse and halt.  It is important to avoid turning the switches on in a way which would short power to ground.  Most H-bridges are constructed using 4 mosfets since a mosfet functions well as a switch with minimal current loss.


Before designing an H-bridge chip from scratch, we searched for a commercially available option which operated in the range of our specifications.  Due to high shoot through current of our rear motor (upwards of 6A) and low voltage of the devices (5V maximum for both motors) it was next to impossible to find an h-bridge which satisfied our needs.  We then ordered suitable mosfets from Digi-Key and etched our own board.


Our choices of mosfets were the IRF7210-ND and the IRF7460-ND but any mosfets suitable for the desired motors can be substituted in the schematic found later in Appendix A.  Note: When substituting mosfets, only substitute N-channel for N-channel and P-channel for P-channel!
5. FET Drivers

To quickly charge the capacitance of the Mosfets we needed to source the switches from something other than the PIC microcontroller.  This is where FET drivers come in.  For our project we used the MIC4424 which was available from the ECE Electronic Storeroom.
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Operation of the FET Driver:

	INA
	OUTA

	0V
	0V

	3.3V
	VS



The FET drivers are straightforward.  Each IC is able to drive two mosfets.  Since our design uses 8 mosfets, we thus needed 4 MIC4424s.

6. Video Decoder

The video decoder chip is a TVP5150A from TI. Its primary function is to take an NTSC analog signal, lock onto the sync signals, and output a digital form of the data. For our purposes, we are interested a video format called 4:2:2 YUV with non-embedded syncs. The YUV format uses four bytes for every two pixels and comes down through the data bus at 27MHz per byte. The byte stream is in the order UY1VY2 where the first pixel is decoded using Y1UV and the second pixel is decoded using Y2UV. Because we are not using embedded sync signals, the compression hardware relies on the external VBLK, and AVID pins on the decoder chip. The VBLK line is low during the lines that are usable data and the AVID line is high when the pixels in a line are usable data. We wouldn’t need to supply these to the host because, based on the transfer speed, the host should be able to calculate the actual size of the transferred video.

The video circuit we used is based on the circuit from the application notes from the TVP5150A datasheet. The changes we made were in the values of few resistors and capacitors, and we didn’t connect the second NTSC channel. The circuit was etched and soldered onto a small PCB and some 0.1” headers were added so that it could fit in a standard breadboard.
7. Video Compression

As the NTSC video signal passes through the video decoder, the digital output occurs at 27 MHz which would require a much faster PIC Microcontroller as well as much greater bandwidth in order to transmit.  As a result, compression hardware was needed.


The byte output from the video decoder (using YUV format) is: Cr Y Cb Y… where every pixel has its own Y component but every two pixels share the same Cr and Cb components.  The Y component represents luminance and thus by dropping down to a grayscale image format only the Y components would need to be sampled.  This cuts the necessary sampling rate down to 13.5 MHz—still way too fast.


To further reduce the sampling/transmission rate we decided to use fast logic chips (shift registers with parallel load) to pull the 2 most significant bits of each Y and constructing a single byte which represents 4 pixels.  This means each byte now needs to be sampled by the PIC at 3.375 MHz—still too fast.


By only sampling every 4th Y pixel (using fast counters) we can reduce the sampling rate to 843.7h KHz which is a reasonable frequency for the PIC microcontroller.  This leaves us 11 instruction cycles in between sampling pixels on the PIC.  The Bluetooth bandwidth prevents us from transmitting this quickly so instead we buffer an entire line of sampled data in the PIC, send it off, and then buffer in the next available line.  This method allows for the transmission to scale according to the current baud rate without requiring a circuit redesign, however too small of a baud rate would cause for an image only 1 pixel high!
IV. Software Development

There were no specific difficulties in the development of our PC-based control software. Any curiosities could easily be satisfied by looking through the provided source code.  However we would like to stress the importance of choosing appropriate tools for the job.  In our case, the C# was chosen as our implementation language because it allows for easy development of graphical user interfaces.  Additionally, C# (via the .NET 2.0 frameworks) provides a strong library base for COM.  By harnessing the already existing serial port interface libraries we were able to spend more time focusing on the car hardware and less time learning how to reinvent the wheel.

V. Parts List
Core Car Controller Circuit

· 1 Car Chassis with 2 brushed DC motors capable of 5V DC

· 1 BR-SC30A BlueRadios Bluetooth Module

· 1 PIC18F4320 Microcontroller

· 1 F1100E 0409 40Mhz Crystal Isolator 

· 4 IRF7210-ND P-Channel Mosfets

· 4 IRF7460-ND N-Channel Mosfets

· 4 MIC4424 Non inverting FET drivers
Video Circuit
· (Shared with above circuit) BR-SC30A BlueRadios Bluetooth Module

· 1 PIC18F4320 Microcontroller

· 1 F1100E 0409 40Mhz Crystal Isolator

· 1 TVP5150 Video Conversion Circuit

· 2 CD74AC163 4-bit Synchronous Binary Counters

· 4 CD74HC194 High-Speed 4-bit Bidirectional Shift Registers
V. Conclusion


Our final product was a prototype modified RC car that can be driven from a PC or other programmable Bluetooth Ready device. The car has the ability to move forward, backward, turn left, turn right, and honk. It uses the original motors and chassis from the RC car we purchased and incorporates our H-birdge, FET drivers, one PIC 18F4320, and a Bluetooth module.

After spending many nights working on the video compression and transmission components, we discovered that our particular Bluetooth module was not capable of transmitting fast enough to stream live video and thusly fails to live up to true Blue Tooth 1.2 spec. Instead of transmitting at the maximum Bluetooth speed of 700kbps, it could only send at 34.5 kbps tested. Attempting to transfer any faster overflows the internal buffer on the BlueRadios module and causes the onboard processor to reset, dropping the Bluetooth connection.  Had we been able to transfer at full Bluetooth speed, highly compressed video streaming would have been possible!
Our plans for the cell phone interface never fully materialized either. We were unable to obtain a suitable cell phone for testing until two weeks before the project was due. In those two weeks we spent some time working on an early version of the Motorola Razor.  Although the cell phone specifications explicitly states it is JSR-82 compatible, we were unable to initiate a BSPP session with a PC much less the car due to limitations in the current SDK.

Over all, the project was a great success in learning. We both gained knowledge and experience in power systems, motors, video, video compression, and embedded systems. At the same time we have an interesting prototype of a car to be proud of and the success of our public demos at the University of Illinois Engineering Days.
Appendix A
A.1 Main Schematic
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A.2 Dual H-Bridge Schematic
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A.3 TVP5150A Circuit
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A.4 Video Compression Circuit
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Figure 2.1
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Figure 3.1: Operational Block Diagram
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 Video PIC Flow Control
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Figure 3.2.1 – Video PIC Flow Control



